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The linear theory of supersonic gas flow does not give sufficient accu- 
racy for the determination of the aerodynamic characteristics of many 
bodies encountered in practice. For this reason more accurate solutions 
of the equations for the perturbation velocity potential @ have been 
found by various authors (van Dyke [ 1 1 , Broderick [ 3 1 , Moore [ 3 1 , 
etc.) for bodies lying entirely inside the Mach cone produced in an un- 
disturbed homogeneous gas stream. But in all these works no general 
analysis is given of the effect upon the flow field of replacing the con- 
ditions at the shock wave by the condition a= 0 at the Mach cone of the 
undisturbed stream. 

An analysis is given below of the effect upon the conical flow field 
in higher approximations of the shock wave produced by a conical body 
lying entirely inside the Mach cone produced in an undisturbed uniform 
supersonic gas stream. By the methods of the theory of the .boundary 

layer”, series in a small parameter are found that represent the conical 
potential F in the vicinity of a weak shock wave and in the vicinity of 
the Mach cone (when an expansion of the undisturbed stream occurs). Then 
these series are .matched” with the series in a small parameter (rela- 
tive thickness, angle of attack, etc.) representing F in the “inner” part 
of the flow, which makes it possible to obtain the flow field in the 
entire region between the body and the shock wave. It is known 14 I that 
the series in a small parameter representing the exact solution in the 
“inner” part of the flow diverges in the vicinity of the shock wave (or 
Mach cone). Analysis of the solution in the uboundary layer” shows that 
with formal analytical continuation of each term of this series to the 
undisturbed Mach cone, the conical perturbation velocity potential should 
vanish there up to terms of O(E *) for slender bodies (such as a circular 
cone) and to 0(a4) for thin bodies (such as a triangular plate), where 
6 is the thickness ratio and 6 the angle of attack. (Higher-order terms 
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in the series are infinite on the Mach cone.) Vorticity appears in terms 
O(E I*) and 0(a6) respectively for slender and thin bodies. The position 
of the shock wave produced by the body is also determined. The result 
agrees with the result of Lighthill [ 4 I. 

1. Let a uniform supersonic stream of gas flow past a conical body 
with speed W,, Mach number M,, and speed of sound aI. We assume that the 
body lies completely within the Mach cone of the undisturbed stream with 
vertex at the tip of the body. A conical flow is produced around the 
body, in which the velocity, entropy and pressure are constant on rays 
passing through the vertex of the body. The conical flow is separated 
from the uniform stream by a shock wave, or partly by a shock wave and 
partly by a Mach cone in the region where the undisturbed stream expands. 
We place the origin of a Cartesian coordinate system at the vertex of 
the conical body, with the z-axis in the direction of the undisturbed 
stream. As independent variables in the conical flow we take 5 = x/z and 

I = Y/G henceforth we shall use the polar coordinates 5 = r cos 8 and 
q = r sin 8 in the cq-plane. 

The velocity potential 9(x, y, z) is represented for conical flow by 
4 = zF(r, 01, where F satisfies the equation [5 I 

(a2 (1 + 9) - [rF - (1 + r*) F,12) F,, + 2 [F -P(; +- r)]Pe@ Fro-- f Fo)+ 

-!( 
a2-;F: 

)( 
fFBB++~p)=~ (l*lJ 

a2=a2 
1 - q [Fr2 + ; Fe2 + (F - rB,)2 - W12] 

Here a is the speed of sound and y the adiabatic index. (The vorti- 
city of the flow shows no effect upon the following results.) 

2. We find an expansion of the conical potential F as a series in a 
small parameter in the vicinity of a weak shock wave, and in the vicinity 
of the Mach cone when the undisturbed flow is expanded. At the Mach cone 

1 

r=rl= KY ml=~Ad,2-1 

Here the perturbation velocity vanishes; that is, at r = rl, F = WI 
and Fr = 0. We write the equation of the shock wave in the form r- r,(e) = 

r1 + A +(e, A), where h is a small parameter and +(e, 0) = 4,(e) < w. 

For an irrotational flow the condition of continuity of the tangential 
component of velocity at the shock and Prandtl’s condition on the normal 
component may be written in the form 
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Here the prime indicates differentiation with respect to 0. 

For F = r,(O) one can obtain from (1.1) and (2.1) respectively 

F =f$n&4hp+O(X2), r Fm = -Ts $+o(A) ; 
‘Ibis shows that near the shock wave there appears a “boundary layerm 

such that if the thickness and angle of attack of the body producing the 
shock tend to zero, the gradient of the modulus of the velocity vector 
in the neighborhood of the shock wave remains finite (F,, f O), whereas 
it tends to zero in the rest of the flow. ‘Ihe appearance of the Obound- 
ary layer” is a result of the fact that the coefficient of Fr, in EYqua- 
tion (1.1) is of the small order O(h) in the vicinity of the shock wave; 
that is, we have here an equation with a small parameter in the highest 
derivative (in the direction of F, almost normal to the boundary, the 
shock wave). By analogy with the Prandtl boundary layer in a viscous 
fluid, it. is natural to call this phenomenon a “boundary layer,” and to 
use the methods of boundary-layer theory to find the flow in the neigh- 
borhood of the shock wave. A #boundary layera also exists near the Mach 
cone, since for an arbitrarily small perturbation in the vicinity of the 
Mach cone, F is represented by the expansion [ 5 1 

where 

p1 - WI nil” LV, 
z(r+l) M14 ’ 

ti [3&Z - 
‘i’l = 6 (y + I)” M,@ (7 + 4) (1 -- m,*)l 

C(e) is an arbitrary function; Frt = 28, f 0 at F = rl. 

We shall seek F in the vicinity of the shock wave in the form of a 
series 

F = W, + h2F, (0, t, h) -+ h2F2 (0, t, h) i . . . 

lhe value t = 1 corresponds to the shock wave..Substituting (2.3) 
into (1.1) we obtain equations for F,, F,, . . . . If a function y(t) is 
introduced according to 

then the function y(t) satisfies the equation 

(2.4) 
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lhe equations for Fk are transformed into 

GF, 
dl” (Y’ - w + M* (y” -+ 1) = p/( W) 

Here the P, depend upon F,, . . . . F,_,. ‘Ihe conditions (2.1) on the 
shock wave at t = 1 give 

From (2.4) and (2.6) we obtain 

y (f) x $:[.t - + (a-f ty2 - +] (2.7) 

'Ihe functions P, are sums of products of functions of t and of 6; 
therefore all the equations (2.5) can be integrated in closed form, since 
their integration reduces to the integration of simple ordinary differ- 
ential equations. 

In particular, for F2 we obtain 

(2.S) 

where x1, x2, x3 satisfy the equations 

qU(y'- 2) .+ q'(yN -+ I) = z/ P- t?j' $- 
[ 

111,~ 
2 (y + 1) M,J2 

withboundary conditions 

x,(t)=P,(1)=2~(1)=0, x2'(¶)-= -2w, x2'(1)- -2, r,'(l)=0 

From (2.9) it is easy to obtain the asymptotic representation of F2 

for large t 

F, = - ~~‘lw6 23 (@S + (@” _ )$‘$‘) (_ $” _+ , _ . 
(r+1)M14 45 

(2.11)) 
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and establish the general structure of F, for large t 

F, = 0, (-p + 0, (- 1)2 J Ir, (- ip Ill ( -- 1) -f- . . (2 11) 

Here the bk are certain functions of 8 and X (whose explicit repre- 
sentation is not required). ‘l’he term in ln(- t> appears on account of 
zl( t) . We consider the lboundary layera in the vicinity of the Mach cone 
I” = rl. As before, we shall seek F in the form (2.31, but here +(0, h) 
is some undetermined function and h a parameter characterizing the order 
of the velocity upon leaving the “boundary layer.” Equations (2.41, (2.5) 
and (2.9) retain their form; only the boundary conditions change. At 
t = 0, corresponding to the Mach cone, Fk = dF@ = 0. For y(t) one ob- 
tains the equation 

Y (0 = +- {t + & [ (1 - 2cq8j” - I]} (2..12) 

where c is an arbitrary constant. ‘Ihe boundary conditions (2.9) have the 
form 

x1 (0) = x2 (0) = x3 (0) = 51’ (0) = x2’ (0) = x3’ (0) = 0 

For small t we have y(t) = l/2 t2 + . . . . the solution of the homo- 
geneous equation xO”(y’ - 2 t) + xo’(y”+ 1) = 0 has the form 

20 = -g + . . . , 
51 = (r + 4) (ml2 - 1) + 3 p In (_ q + 

6 (7 + 1) Ml2 
. . . , x2, 53 - 0 (P) 

Hence it follows that upon transforming to rl - r and 8 the expansion 
(2.3) agrees with (2.2), which shows the correctness of (2.3). For large 
t the solution behaves analogously to the case of the shock wave. In 
particular, Equation (2.11) is preserved. 

3. If, now, in (2.3) we transform to rl - r and 8 for large t, the 

terms xkFk(e, t, X) are all of order 0(X1i2), and from (2.3) we obtain 

F = W, - h’/$/p T% $$ !!$? { crl _ $iz + 

(rl - r)“’ + . . .} + 0 (h) 

(3.1) 

w=W,.--~Qp --- If 11, WI rnifz 4 JCi X (3.2) 
r+lM? 9 

where w is the velocity component along the Oz-axis in the case of the 
shock wave. In the case of the Mach cone we obtain 
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Expressions (3.1), (3.3); (3.2), (3.4) differ only in the sign of 
XJ/' and that fact that + is replaced by $. From these expressions it 
follows that if they are valid for small but finite values of (rl - P)'/' 
and represent the linear solution that holds in the ainnern part of the 
flow, then their formal analytic continuation to r = rl gives zero 

values for the potential and perturbation velocity at r = rl. In linear 
theory it is shown that 10 - W, is a harmonic function of the variables 

Wit any harmonic function that vanishes at a = 1 (r = rl) can be re- 

presented in the form 

u;-lVW,=cOIna+ 5 (~-_an)(c,,cosn8+c,,sinnB) 
n=1 

where co, ‘nla cn2 are constants. In the vicinity of the Mach cone it 
reduces to a series in powers of (rl - r)lj2 

w = WI + [- c,JCT + 2 2 ~Trz(c,, cosnO+ c,,sinnO)] x 

x (rl - r)‘ls + 
- 5c0 + 2 2n (5 + 4ns) (C,~COS nfJ + cna sin ne) 

12[-co + 27 2n(~,~cos ne + cn2 sin no)] (r1 - r)‘/z + . . . 
1 

(n = 1, 2,. . .,oo) (3.5) 

If the expansions (3.21, (3.4) 
of (rl - r)‘lS, 

are valid for small but finite values 

(rl - r) l/2 * 
then (3.5) should agree with (3.4) if the coefficient of 

that is, 
1s positive and with (3.2) if that coefficient is negative; 

the following equalities should hold: 

WI rn:la4 1/3 
- ??q? 7+1 lMr'9 = -c,, l/z + 2 2 7/~n(c,,,cosn~+ c,,sinnB) (3.6) 

5@ + 9” - 2w” = --co+ ~2n(5+4na)(c,lcosnEl +c,zsin 780) 

cps --co+ ~2n(c,lcosn~-+c,zsinnO) 
(n=1. . . . . =I (3.7) 
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Analogously for r/r. Putting the left side of (3.7) in the form 

5 - (cG$)2 - 2(q/$>‘; it ia easy to show that (3.7) is a consequence 
of (3.6) (and the same for I)). (‘Ihis fact was also verified by the author 
for special cases: the triangular plate at angle of attack and the 
circular cone. ) 

‘Ihe above considerations provide a basis for assuming that (3.1) and 
(3.3) represent $’ for small but finite (rl - r)li2. In particular, it 
follows that the usual linear theory gives the correct result for F and 
the perturbation velocity inside the Mach cone. We now write (2.3) for 
large t, using (2.71, (2.12), (2,111, in the form 

F = W, + h2F1 + A”Fa + . . . 
= WI + Aa [aI (- t)” + a2 (- t) + us (- t).:h + a4 + a, (- t)-‘f* + . . . ] + 

+hs[b,(-t)'f~+b,(-~2)+h3(-t)af~In(-t)+...]+... (3.8) 

Here the ok = a1(8, A) are the coefficients of the expansion of F, 
in decreasing powers of t, *on transforming to rl - r and 0 for large 
t, we obtain from (3.8) 

Here the coefficients ak(6, A), bk(8, A) can in turn be represented 
as series in X and In X. From the expansion (3.9) that represents F for 
small but finite (rl - r)li2 it follows that with formal analytic con- 
tinuation of each term of the expansion to the Mach cone (r = rl) the 
perturbation velocity potential (F - WI> vanishes at r = rl up to 
quantities of 0(X2). Terms of higher order than A” become infinite as 
r+ fl. 

This means that the series in powers of X’f’ and In A, representing 
F - WI in the ninnern part of the flow should, upon formal analytic con- 
tinuation to r = rl, vanish at r = ry with the inclusion of terms of 
magnitude 0(h9). Terms of the expansion of order higher than X2 become 
infinite (to a definite order) as r + rl. 

4 We assume that the solution of the linear problem is known under 
the conditions that the potential and the perturbation velocity are 
equal to zero at r = rl. In the vicinity of F = r1 every such solution 
can be represented in the form 
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F = w, [I - ; m,“/zA (e) (rl - rp + . . . j (4-l) 

(The factor W, 2/3 ml312 is isolated for convenient comparison with 
the results of Lighthill I 4 1 . ) On the other hand, from (3.1) and (3.3) 
we have 

For those 8 for which A(~~ > 0, that is, the flow is compressed in 
the vicinity of r = rl, 
in (4.2) and (4.1) 

we obtain by equating coefficients of (rl - r)‘/’ 

Qo (0) = ; (7 + 1)2 s A2 (0) (4.4) 

For r,(O) one obtains the equation 

no, (0) = ml [rr + hrp, (0) + . . .] = 1 + 2 (r + 1)2Mlsml-4A2 (0) _i- . . . (4.5) 

which agrees with the formula of Lighthill I4 I . 

For those 8 for which A(6) < 0, that is, the flow is expanded in the 
vicinity of r = rl, we obtain by equating coefficients of (rl - r)3/2 in 
(4.3) and (4.1)) analogous to (4.4), the quantity X+,,,(e), which leads to 
the solution in the *boundary layer” and remains undetermined. This func- 
tion characterizes the velocity of expansion of the stream in the vicini- 
ty of the Mach cone. The agreement obtained with the result of Lighthill 
is explained by the fact that Lighthill’s method gives the correct lead- 
ing term in the vicinity of the shock wave. If we transform Lighthill’s 
solution in the vicinity of the shock wave to the variables t and 8 of 
the “boundary layer”, we obtain 

F = W, + W, g (y f ~)3~~~1zm~-6A~ (0) IIt - $ (I- a ty + +] + . . . (4.6) 

From the relation (2.3) one obtains 

F = W, -t h2F, + . . s 

Although the perturbation velocity potential F - W, does not vanish 
on the shock wave, at t = 1, according to Equation (4.6), the derivatives 
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dF/dt that determine the position of the shock are identical according 
to (4.6) and (4.7). ‘Ibese results confirm the possibility of using 
Lighthill’s method to determine the shock-wave position. 

5. The author has investigated the effect of vorticity in the stream 
upon the velocity components in the .beundary layer” and those leaving 
it, starting from the full system of equations for the three components 
of velocity and the entropy [ 6 1, and has found that the influence of 
entropy upon the velocity components in the “boundary layer’ appears in 
terms of order 0(X’), and 0(x3) for those leaving it, where x = E’ for a 
slender body, E being the thickness ratio, and x = 6* for a thin body, 
6 being the angle of attack, etc. The entropy is 0(X3) everywhere in the 
stream. 

6. It is well known that for flow past a slender body the order of 
the perturbation velocity is different near the surface of the body and 
in the “middle” part of the flow. For example, for a circular cone the 
perturbation velocity potential F - W, has in the “middle” part of the 
flow the order O(p*), and near the body O(p* In p), where p = tan c, 6 
being the semi-vertex angle. Strictly speaking, there is a Oboundary 
layer” near the surface of a slender body. The author has investigated 
this “boundary layer’ for the circular cone at zero angle of attack. 

The potential F was taken in the form 

F = w1 + F,,,(t)y21np + Fz(r)pz + Ft.1 (+4b+e.. (z = rpdl) (6.1) 

Calculation showed that the functions PA l(r), Fk(r) are sums of pro- 

ducts of positive powers of In r and powers’of r. These functions make 
it possible to separate r and /L for all r, and it is consequently possi- 

ble to represent F as a single expansion in powers of p and In ,u for the 
solution near the surface of the body and in the “middle. part of the 
flow; that is, this “boundary layer” is non-essential. 

The situation is different for the “boundary layer’ near the shock 
wave (or Mach cone). A term (1 - 3/4 t)“/* appears in the expression for 
F,(t, 8, A), which does not admit of a single expansion, since for 
1 t ( < 413 this expression reduces to a series in powers of t, but for 

1 tl > 4/3 to one in powers of f’ (the shock wave corresponding to t= 1). 
For this reason the Oboundary layer” near the shock wave has an essential 
character. 

7. The practical conclusions from the results formulated above are 
that to obtain higher-order approximations in the problem of flow past 
e conical body it is necessary to seek the perturbation velocity 
potential as e series in e smell parameter, end require that each term 
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of this expansion vanish at the Mach cone of the undisturbed stream up 

to terms of O(r8) for a slender body and O(6’) for a thin body (where c 
is the thickness ratio, and 6 the angle of attack or other appropriate 
parameter). There is reason to suppose that this result holds also for 
the general case of flow past a body situated within the Mach cone of 
an undisturbed uniform supersonic stream of gas. 

The author thanks S.V. Fal’ kovich for essential comments on the 
questions considered. 
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